skip to main content


Search for: All records

Creators/Authors contains: "Huang, Shu-Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A grating coupler on 700-nm-thick Z-cut lithium-niobate-on-insulator platform with high coupling efficiency, large bandwidth, and high fabrication tolerance is designed and optimized by inverse design method. The optimized grating coupler is fabricated with a single set of e-beam lithography and etching process, and it is experimentally characterized to possess peak coupling efficiency of −3.8 dB at 1574.93 nm, 1 dB bandwidth of 71.7 nm, and 3 dB bandwidth of over 120 nm, respectively.

     
    more » « less
    Free, publicly-accessible full text available January 29, 2025
  2. Optical frequency combs, which consist of precisely controlled spectral lines covering a wide range, have played a crucial role in enabling numerous scientific advancements. Beyond the conventional approach that relies on mode-locked lasers, microcombs generated from microresonators pumped at a single frequency have arguably given rise to a new field within cavity nonlinear photonics, which has led to a robust exchange of ideas and research between theoretical, experimental, and technological aspects. Microcombs are extremely attractive in applications requiring a compact footprint, low cost, good energy efficiency, large comb spacing, and access to nonconventional spectral regions. The recently arising microcombs based on fiber Fabry–Pérot microresonators provide unique opportunities for ultralow noise and high-dimensional nonlinear optics. In this review, we comprehensively examine the recent progress of fiber Kerr microcombs and discuss how various phenomena in fibers can be utilized to enhance the microcomb performances that benefit a plethora of applications.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract

    Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-optical-cycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose an approach and demonstrate the first turnkey Brillouin-DKS frequency comb to the best of our knowledge. Our microresonator-filtered laser design offers essential benefits, including phase insensitivity, self-healing capability, deterministic selection of the DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 μs. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices.

     
    more » « less
  4. The counterpropagating all-normal dispersion (CANDi) fiber laser is an emerging high-energy single-cavity dual-comb laser source. Its relative timing jitter (RTJ), a critical parameter for dual-comb timing precision and spectral resolution, has not been comprehensively investigated. In this paper, we enhance the state-of-the-art CANDi fiber laser pulse energy from 1 nJ to 8 nJ. We then introduce a reference-free RTJ characterization technique that provides shot-to-shot measurement capability at femtosecond precision. The measurement noise floor reaches1.6×<#comment/>10−<#comment/>7fs2/Hz, and the corresponding integrated measurement precision is only 1.8 fs (1 kHz, 20 MHz). With this characterization tool, we are able to study the physical origin of the CANDi laser’s RTJ in detail. We first verify that the cavity length fluctuation does not contribute to the RTJ. Then we measure the integrated RTJ to be 39 fs (1 kHz, 20 MHz) and identify the pump relative intensity noise (RIN) to be the dominant factor responsible for it. In particular, pump RIN is coupled to the RTJ through the Gordon–Haus effect. Finally, solutions to reduce the free-running CANDi laser’s RTJ are discussed. This work provides a general guideline to improve the performance of compact single-cavity dual-comb systems such as the CANDi laser, benefitting various dual-comb applications.

     
    more » « less
  5. Abstract

    Dissipative Kerr soliton (DKS) frequency combs—also known as microcombs—have arguably created a new field in cavity nonlinear photonics, with a strong cross-fertilization between theoretical, experimental, and technological research. Spatiotemporal mode-locking (STML) not only adds new degrees of freedom to ultrafast laser technology, but also provides new insights for implementing analogue computers and heuristic optimizers with photonics. Here, we combine the principles of DKS and STML to demonstrate the STML DKS by developing an unexplored ultrahigh-quality-factor Fabry–Pérot (FP) mesoresonator based on graded index multimode fiber (GRIN-MMF). Complementing the two-step pumping scheme with a cavity stress tuning method, we can selectively excite either the eigenmode DKS or the STML DKS. Furthermore, we demonstrate an ultralow noise microcomb that enhances the photonic flywheel performance in both the fundamental comb linewidth and DKS timing jitter. The demonstrated fundamental comb linewidth of 400 mHz and DKS timing jitter of 500 attosecond (averaging times up to 25 μs) represent improvements of 25× and 2.5×, respectively, from the state-of-the-art. Our results show the potential of GRIN-MMF FP mesoresonators as an ideal testbed for high-dimensional nonlinear cavity dynamics and photonic flywheel with ultrahigh coherence and ultralow timing jitter.

     
    more » « less
  6. Abstract

    Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity soliton microcombs by nesting a microresonator into a fiber cavity, shows great potential to solve the problems. Here we study the dissipative soliton generation and interaction dynamics in a microresonator-filtered fiber laser in both theory and experiment. We bring theoretical insight into the mode-locking principle, discuss the parameters effect on soliton properties, and provide experimental guidelines for broadband soliton generation. We predict chirped bright dissipative soliton with flat-top spectral envelope in microresonators with normal dispersion, which is fundamentally forbidden for the externally driven case. Furthermore, we experimentally achieve soliton microcombs with large bandwidth of ~10 nm and high mode efficiency of 90.7%. Finally, by taking advantage of an ultrahigh-speed time magnifier, we study the real-time soliton formation and interaction dynamics and experimentally observe soliton Newton’s cradle. Our study will benefit the design of the novel, high-efficiency and self-starting microcombs for real-world applications.

     
    more » « less
  7. Dissipative Kerr soliton generation in chip-scale nonlinear resonators has recently observed remarkable advances, spanning from massively parallel communications, to self-referenced oscillators, and to dual-comb spectroscopy. Often working in the anomalous dispersion regime, unique driving protocols and dispersion in these nonlinear resonators have been examined to achieve the soliton and soliton-like temporal pulse shapes and coherent frequency comb generation. The normal dispersion regime provides a complementary approach to bridge the nonlinear dynamical studies, including the possibility of square pulse formation with flattop plateaus, or platicons. Here we report observations of square pulse formation in chip-scale frequency combs through stimulated pumping at one free spectral range and in silicon nitride rings with+55  fs2/mmnormal group velocity dispersion. Tuning of the platicon frequency comb via a varied sideband modulation frequency is examined in both spectral and temporal measurements. Determined by second-harmonic autocorrelation and cross correlation, we observe bright square platicon pulse of 17 ps pulse width on a 19 GHz flat frequency comb. With auxiliary-laser-assisted thermal stabilization, we surpass the thermal bistable dragging and extend the mode-locking access to narrower 2 ps platicon pulse states, supported by nonlinear dynamical modeling and boundary limit discussions.

     
    more » « less
  8. Kerr microcombs hold the promise of bringing frequency combs onto the chip and into a variety of applications requiring low size, weight, power, and cost. However, reliable Kerr microcomb generation is hindered by the thermal effect and multistability of dissipative Kerr solitons (DKSs). Past approaches toward Kerr microcomb reliability include either deterministic single-soliton generation or self-starting soliton behavior but not both. Here we describe a regime of DKSs that isbothdeterministic and self-starting, in which only a single soliton can stably exist. We term this new DKS regime “monostable DKSs” (MS-DKSs) as all other optical behaviors, such as continuous-wave-only and multiple solitons, are fundamentally forbidden by the design. We establish a graphical model to describe MS-DKSs and discuss the design principles of MS-DKSs. We numerically demonstrate the MS-DKS behavior in an example periodically poled lithium niobate microring resonator.

     
    more » « less
  9. Time-correlated single-photon counting (TCSPC) is an enabling technology for applications such as low-light fluorescence lifetime microscopy and photon counting time-of-flight (ToF) 3D imaging. However, state-of-the-art TCSPC single-photon timing resolution (SPTR) is limited to 3–100 ps by single-photon detectors. Here, we experimentally demonstrate a time-magnified TCSPC (TM-TCSPC) that achieves an ultrashort SPTR of 550 fs with an off-the-shelf single-photon detector. The TM-TCSPC can resolve ultrashort pulses with a 130-fs pulse width difference at a 22-fs accuracy. When applied to photon counting ToF 3D imaging, the TM-TCSPC greatly suppresses the range walk error that limits all photon counting ToF 3D imaging systems by 99.2% and thus provides high depth accuracy and precision of 26 µm and 3 µm, respectively.

     
    more » « less